开启线上直播
订阅更多信息
更多流量 更易传播
产品详情
0.5立方米/时地埋式一体化污水处理设备根据地埋式污水处理设备安装图与基础图,准备基础以安装平面图大小尺寸为准,做好混凝土底板,基础要求平均承压5t/m2,基础必须水平,并应在混凝土基础浇注保养期结束后才能进行安装,如设备安装在地坪以下,基础离地坪相对标高按图尺寸为准,同时四周挖掘宽度,长度必须离基础边线500mm以上,以便管道安装。管道安装连接应该在设备就位时考虑好,设备就位时必须按说明书设备自重,配合吊车吨位大小,安装顺序按现场对照图就位,筒体的位置,方向不能放错,互相间距必须正确。根据安装图,连接管道,设备就位后连接管道用橡皮垫紧固好,使连接处不渗漏。地埋式污水处理设备安装完毕后设备与基础地板必须连接固定,保证不使设备流动上浮, 同时须在设备中注入污水(无污水时,用其他水源或自来水代替),充满度必须达到70%以上,以防设备上浮。同时,检查好各管道有无渗漏。试水各管路口必须不渗漏,同时设备不受地面水上涨,而使设备错位和倾斜。设备安装完毕无不妥后,即可用土填入设备四周与间隙中夯实,并整平地面填土时应注意:设备人孔盖板必须高出地坪50mm左右;不能让土堵塞人孔盖板上的进气口。把电控柜控制线与设备接通,接线时注意水下曝气机及潜污泵电机的转向,如地下室控制柜要放在通风处,保持干燥,一般控制柜不能放在露天。须防日晒,淋雨等。以免控制板及接线头漏电,烧毁控制板。有不少污水处理项目将相类似的生态处理技术组合取得了一定的效果。在生活污水处理过程中,通过设计复合垂直流人工湿地,通过对其进行应用,将下行流池和上行流池合理的串联在一起,并且要保持底部连通,然后将待处理的生活污水运送到到湿地系统中,通过该方式,实现充分的硝化和反硝化。针对湖泊流域的生活污水在具体处理过程中,有些项目采取多级土壤过滤的方式完成,利用多级土壤过滤,同样可以降低生活污水中的COD、TN、SS 等各种杂质。
生物滤池:好氧生物膜法主要用于去除污水中溶解性有机污染物,小型生物处理系统采用生物膜法有节能、强化抗冲击能力、少维护、管理简单等优点。研究与应用较多的是生物滤池、生物转盘等。生物滤池曾是屠宰废水基本的处理方法之一,其特点是耐冲击负荷,效果稳定,一般采用两级串联运行。由于屠宰废水中蛋白质含量很高,微生物大量繁殖易使滤池堵塞,因此滤池前需有其他预处理设施。水解酸化-好氧生物处理:针对屠宰废水中含有大量高分子有机物的特点,为提高好氧生物处理效果、缩短废水停留时间、减少反应池容积,研究者在好氧生物处理前加入酸化处理,开发出酸化-好氧生物处理工艺。酸化过程的设置将动物性复杂大分子有机物降解成小分子溶解性有机物酸,为后续好氧反应器提供优质的底物,提高了整个处理系统的抗冲击负荷能力和稳定性;同时类似于消化池的固体降解过程实现了污水酸化和污泥消化的集中处理,污泥产量低。由于养殖业废水属于高有机物浓度、高N、P含量和高有害微生物数量的“三高”废水。因此厌氧技术成为畜禽养殖场粪污处理中*的关键技术。对于养殖场这种高浓度的有机废水,采用厌氧消化工艺可在较低的运行成本下有效地去除大量的可溶性有机物,COD去除率达85%~90%,而且能杀死传染病菌,有利于养殖场的防疫。如果直接采用好氧工艺处理固液分离后的养殖业废水,虽然一次性投资可节省20%,但由于其消耗的动力大,电力流水消耗是厌氧处理的10倍之多,因此长期的运行费用将给养殖场带来沉重的经济负担。
0.5立方米/时地埋式一体化污水处理设备A2/O工艺段:A2/O池包括水解酸化池、缺氧池、接触氧化池,去除有机污染物、氨氮值、总磷等主要依赖于系统中的A2/O生物处理工艺。其中工作原理是在厌氧池微生物可对好氧微生物不能降解的一些有机物进行降解或部分降解;因此,对于某些含有难降解有机物的废水,利用厌氧工艺进行处理可以获得更好的处理效果,或者可以利用厌氧工艺作为预处理工艺,可以提高废水的可生化性,提高后续好氧处理工艺的处理效果,在缺氧池,反硝化菌利用有机碳作为电子供体,将回流混合液中硝酸盐氮转化为N2,还利用部分有机碳源和NH3-N合成新的细胞物质,终消除氮的富营养化污染。在接触氧化池,由于有机物浓度已大幅度降低,但仍有一定量的有机物及较高的NH3-N存在。为了使有机物得到进一步氧化分解,同时在碳化作用趋于完成情况下硝化作用能顺利进行,在O级设置有机负荷较低的好氧生物接触氧化池。在O级池是主要存在好氧微生物及处氧型细菌(硝化菌)。其中好氧微生物将有机物分解成CO2和H2O;自养型细菌(硝化菌)利用有机物分解产生的无机碳或空气中的CO2作为营养源,将污水中的氨氮转化成亚硝酸盐与硝酸盐,硝化反应的机理为:首先由亚硝酸菌参与的将NH4+-N转化为亚硝酸盐(NO2-N);其次由硝酸菌参与的将NO2-N转化为硝酸盐(NO3-N)。其中亚硝酸菌有亚硝酸单胞菌属、硝酸螺菌属和硝酸球菌属等。亚硝酸菌和硝酸菌都是化能自养菌,他们利用CO2、CO32-和HCO3-等作为碳源,通过与NH3/NH4+或NO2的氧化还原反应获得能量。